Co-Culture of Endothelial Cells and Smooth Muscle Cells in a Flow Environment: An Improved Culture Model of the Vascular Wall?
نویسندگان
چکیده
Numerous studies have demonstrated that the neighboring smooth muscle cells (SMC) influence the morphology, cytoskeleton and growth of co-cultured endothelial cells (EC). Also, flow-induced laminar shear stress has been shown to induce cell elongation, F-actin reorganization and growth inhibition in cultured EC. We investigated the effect of neighboring SMC and collagen matrix on the response of EC to shear stress. The co-culture system was made by growing porcine aortic SMC in a gel of collagen type I and then seeding porcine aortic EC (P AEC) on the top surface. Then the coculture was exposed to steady, laminar shear stress of 10 and 30 dynes/cm2 in a parallel-plate flow chamber. EC had a different morphology when cultured on top of collagen gels as compared to cells grown on plastic. When grown in static co-culture with SMC, EC were already elongated and showed a random wavy pattern of orientation. When exposed to 30 dynes/cm2, the EC aligned with the direction of flow after 24 to 48 hours. We suggest that the elongation and orientation of the EC, when cultured on a collagen matrix under static conditions, may be due to contact guidance on the collagen fibers previously rearranged by the SMC during gel retraction. Shear stress, however, was sufficient to induce cell orientation along the direction of flow.
منابع مشابه
بررسی ارتباط اتصالات میواندوتلیال، میان سلول های اندوتلیال و نظم مارپیچی سلولهای عضلانی صاف جدار شرایین توزیع کننده (عضلانی)
Background and Purpose: Conventionally, the architecture of the artery wall is based upon the close-packed smooth muscle cells, endothelial and adventitial cells in both sides of internal elastic lamina (IEL). However, the adventitia and endothelium are now viewed as key players in vascular growth and repair. Recent work raises fundamental questions about the cellular heterogeneity of arterie...
متن کاملThe role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells
Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...
متن کاملEffect of Oxidized Low Density Lipoprotein on the Expression of Runx2 and SPARC Genes in Vascular Smooth Muscle Cells
Background: Vascular calcification is an important stage in atherosclerosis. During this stage, vascular smooth muscle cells (VSMC) synthesize many osteogenic factors such as osteonectin (encoded by SPARC). Oxidative stress plays a critical role in atherosclerosis progression, and its accumulation in the vascular wall stimulates the development of atherosclerosis and vascular calcification. The...
متن کاملPULMONARY VASCULAR MUSCLE PROLIFERATION AS A RESULT OF PROTEIN AND mRNA-eNOS ALTERATIONS IN A RAT MODEL OF CHF
Endothelial Nitric Oxide Synthase (eNOS) produces nitric oxide (NO) from L-arginine and is important for the maintenance of cardiovascular homeostasis. Congestive heart failure (CHF) generally results in increased pulmonary blood flow and if untreated leads to pulmonary hypertension and end stage heart failure. We therefore hypothesized that increased pulmonary flow without changes in pres...
متن کاملA bilayer small diameter in vitro vascular model for evaluation of drug induced vascular injury.
In pre-clinical safety studies, drug-induced vascular injury (DIVI) is defined as an adverse response to a drug characterized by degenerative and hyperplastic changes of endothelial cells and vascular smooth muscle cells. Inflammation may also be seen, along with extravasation of red blood cells into the smooth muscle layer (i.e., hemorrhage). Drugs that cause DIVI are often discontinued from d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017